(1)以通讯作者或第1作者在英文期刊发表学术论文80篇。(2)获得授权发明专利11件(其中第一发明人4件)和实用新型专利4件;参与制定团体标准8项和企业标准6项;参与开发软件著作权5项。
近年来本研究组主要致力于茶叶中核心品质成分香气和氨基酸形成机制的研究与调控技术的研发,一方面进一步完善茶叶品质形成的生物学基础理论,另一方面为茶叶品质安全改良提供重要支撑。如下是关于茶叶香气、氨基酸和其他代谢物相关的部分论文。
(#共同第一作者,*通讯作者)
[1] Fu, X.M., Liao, Y.Y., Cheng, S.H., Deng, R.F., Yang, Z.Y.*. Stable isotope-labeled precursor tracing reveals that L-alanine is converted to L-theanine via L-glutamate not ethylamine in tea plants in vivo. Journal of Agricultural and Food Chemistry, 2021, 69: 15354-15361.
[2] Yang, J.#, Gu, D.C.#, Wu, S.H., Zhou, X.C., Chen, J.M., Liao, Y.Y., Zeng, L.T., Yang, Z.Y.*. Feasible strategies for studying the involvement of DNA methylation and histone acetylation in the stress-induced formation of quality-related metabolites in tea (Camellia sinensis). Horticulture Research, 2021, 8: 253.
[3] Liao, Y.Y.#, Tan, H.B.#, Jian, G.T., Zhou, X.C., Huo, L.Q., Jia, Y.X., Zeng, L.T., Yang, Z.Y.*. Herbivore-induced (Z) -3-hexen-1-ol is an airborne signal that promotes direct and indirect defenses in tea (Camellia sinensis) under light. Journal of Agricultural and Food Chemistry, 2021, 69: 12608-12620.
[4] Zhou, Y., Deng, R.F., Xu, X.L., Yang, Z.Y. *. Isolation of mesophyll protoplasts from tea (Camellia sinensis) and localization analysis of enzymes involved in biosynthesis of specialized metabolites. Beverage Plant Research, 2021, 1: 2.
[5] Yang, J. #, Zhou, X.C. #, Wu, S.H., Gu, D.C., Zeng, L.T., Yang, Z.Y. *. Involvement of DNA methylation in regulating the accumulation of the aroma compound indole in tea (Camellia sinensis) leaves during postharvest processing. Food Research International, 2021, 142: 110183.
[6] Zeng, L.T., Zhou, X.C., Liao, Y.Y., Yang, Z.Y.*. Roles of specialized metabolites in biological function and environmental adaptability of tea plant (Camellia sinensis) as a metabolite studying model. Journal of Advanced Research, 2021, 34: 159-171.
[7] Gu, D.C.#, Yang, J.#, Wu, S.H., Liao, Y.Y., Zeng, L.T., Yang, Z.Y.*. Epigenetic regulation of the phytohormone abscisic acid accumulation under dehydration stress during postharvest processing of tea (Camellia sinensis). Journal of Agricultural and Food Chemistry, 2021, 69: 1039-1048.
[8] Fu, X.M., Liao, Y.Y., Cheng, S.H., Xu, X.L., Grierson, D., Yang, Z.Y.*. Nonaqueous fractionation and overexpression of fluorescent-tagged enzymes reveals the subcellular sites of L-theanine biosynthesis in tea. Plant Biotechnology Journal, 2021, 19: 98-108.
[9] Zeng, L.T.#, Xiao, Y.Y.#, Zhou, X.C., Yu, J.Z., Jian, G.T., Li, J.L., Chen, J.M., Tang, J.C., Yang, Z.Y.*. Uncovering reasons for differential accumulation of linalool in tea cultivars with different leaf area. Food Chemistry, 2021, 345: 128752.
[10] Liao, Y.Y.#, Fu, X.M.#, Zeng, L.T., Yang, Z.Y.*. Strategies for studying in vivo biochemical formation pathways and multilevel distributions of quality or function-related specialized metabolites in tea (Camellia sinensis). Critical Reviews in Food Science and Nutrition, 2020, in press.
[11] Zeng, L.T., Zhou, X.C., Su, X.G., Yang, Z.Y.*. Chinese oolong tea: An aromatic beverage produced under multiple stresses. Trends in Food Science and Technology, 2020, 106: 242-253.
[12] Yu, Z.M., Yang, Z.Y.*. Understanding different regulatory mechanisms of proteinaceous and non- proteinaceous amino acid formation in tea (Camellia sinensis) provides new insights into the safe and effective alteration of tea flavor and function. Critical Reviews in Food Science and Nutrition, 2020, 60: 844-858.
[13] Zhou, Y.#, Zeng, L.T.#, Hou, X.L., Liao, Y.Y., Yang, Z.Y.*. Low temperature synergistically promotes wounding-induced indole accumulation by INDUCER OF CBF EXPRESSION-mediated alterations of jasmonic acid signaling in Camellia sinensis. Journal of Experimental Botany, 2020, 71: 2172-2185.
[14] Fu, X.M.#, Cheng, S.H.#, Liao, Y.Y., Xu, X.L., Wang, X.C., Hao, X.Y., Xu, P., Dong, F., Yang, Z.Y.*. Characterization of L?theanine hydrolase in vitro and subcellular distribution of its specific product ethylamine in tea (Camellia sinensis). Journal of Agricultural and Food Chemistry, 2020, 68: 10842-10851.
[15] Zhou, Y., Deng, R.F., Xu, X.L., Yang, Z.Y.*. Enzyme catalytic efficiencies and relative gene expression levels of (R)-linalool synthase and (S)-linalool synthase determine the proportion of linalool enantiomers in Camellia sinensis var. sinensis. Journal of Agricultural and Food Chemistry, 2020, 68: 10109-10117.
[16] Zeng, L.T., Wang, X.Q., Tan, H.B., Liao, Y.Y., Xu, P., Kang, M., Dong, F., Yang, Z.Y.*. Alternative pathway to the formation of trans-cinnamic acid derived from L-phenylalanine in tea (Camellia sinensis) plants and other plants. Journal of Agricultural and Food Chemistry, 2020, 68: 3415-3424.
[17] Liao, Y.Y., Zeng, L.T., Tan, H.B., Cheng, S.H., Dong, F, Yang, Z.Y.*. Biochemical pathway of benzyl nitrile derived from L-phenylalanine in tea (Camellia sinensis) and its formation in response to postharvest stresses. Journal of Agricultural and Food Chemistry, 2020, 68: 1397-1404.
[18] Mei, X., Xu, X.L., Yang, Z.Y.*. Characterization of two tea glutamate decarboxylase isoforms involved in GABA production. Food Chemistry, 2020, 305: 125440.
[19] Li, J.L.#, Zeng, L.T.#, Liao, Y.Y., Tang, J.C.*, Yang, Z.Y.*. Evaluation of the contribution of trichomes to metabolite compositions of tea (Camellia sinensis) leaves and their products. LWT-Food Science and Technology, 2020, 122: 109023.
[20] Zeng, L.T., Watanabe, N., Yang, Z.Y.*. Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (Camellia sinensis) to safely and effectively improve tea aroma. Critical Reviews in Food Science and Nutrition, 2019, 59: 2321-2334.
[21] Zeng, L.T.#, Tan, H.B.#, Liao, Y.Y., Jian, G.T., Kang, M., Dong, F., Watanabe, N., Yang, Z.Y.*. Increasing temperature changes the flux into the multiple biosynthetic pathways for 2-phenylethanol in model systems of tea (Camellia sinensis) and other plants. Journal of Agricultural and Food Chemistry, 2019, 67: 10145-10154.
[22] Zeng, L.T.#, Wang, X.Q.#, Xiao, Y.Y., Gu, D.C., Liao, Y.Y., Xu, X.L., Jia, Y.X., Deng, R.F., Song, C.K., Yang, Z.Y.*. Elucidation of (Z)-3-Hexenyl-β-glucopyranoside enhancement mechanism under stresses from the oolong tea manufacturing process. Journal of Agricultural and Food Chemistry, 2019, 67: 6541-6550.
[23] Liao, Y.Y.#, Yu, Z.M.#, Liu, X.Y., Zeng, L.T., Cheng, S.H., Li, J.L., Tang, J.C., Yang, Z.Y.*. Effect of major tea insect attack on the formation of quality-related non-volatile specialized metabolites in tea (Camellia sinensis) leaves. Journal of Agricultural and Food Chemistry, 2019, 67: 6716-6724.
[24] Cheng, S.H.#, Fu, X.M.#, Liao, Y.Y., Xu, X.L., Zeng, L.T., Tang, J.C., Li, J.L., Lai, J.H., Yang, Z.Y.*. Differential accumulation of specialized metabolite L-theanine in green and T albino-induced yellow tea (Camellia sinensis) leaves. Food Chemistry, 2019, 276: 93-100.
[25] Liao, Y.Y., Fu, X.M., Zhou, H.Y., Rao, W., Zeng, L.T., Yang, Z.Y.*. Visualized analysis of within-tissue spatial distribution of specialized metabolites in tea (Camellia sinensis) using desorption electrospray ionization imaging mass spectrometry. Food Chemistry, 2019, 292: 204-210.
[26] Wang, X.Q.#, Zeng, L.T.#, Liao, Y.Y., Zhou, Y., Xu, X.L., Dong, F., Yang, Z.Y.*. An alternative pathway for the formation of aromatic aroma compounds derived from L-phenylalanine via phenylpyruvic acid in tea (Camellia sinensis (L.) O. Kuntze) leaves. Food Chemistry, 2019, 270: 17-24.
[27] Zeng, L.T., Wang, X.W., Zeng, L., Liao, Y.Y., Gu, D.C., Dong, F., Yang, Z.Y.*. Formation of and changes in phytohormone levels in response to stress during the manufacturing process of oolong tea (Camellia sinensis). Postharvest Biology and Technology, 2019, 157: 110974.
[28] Zhou, Y.#, Liu, X.Y.#, Yang, Z.Y.*. Characterization of terpene synthase from tea green leafhopper being involved in formation of geraniol in tea (Camellia sinensis) leaves and potential effect of geraniol on insect-derived endobacteria. Biomolecules, 2019, 9: 808.
[29] Zeng, L.T.#, Zhou, Y.#, Fu, X.M., Liao, Y.Y., Yuan, Y.F., Jia, Y.X., Dong, F., Yang, Z.Y.*. Biosynthesis of jasmine lactone in tea (Camellia sinensis) leaves and its formation in response to multiple stresses. Journal of Agricultural and Food Chemistry, 2018, 66: 3899-3909.
[30] Cheng, S.H.#, Fu, X.M.#, Wang, X.Q., Liao, Y.Y., Zeng, L.T., Dong, F., Yang, Z.Y.*. Studies on the biochemical formation pathway of the amino acid L-theanine in tea (Camellia sinensis) and other plants. Journal of Agricultural and Food Chemistry, 2017, 65: 7210-7216.
[31] Chen, Y.Y.#, Fu, X.M.#, Mei, X., Zhou, Y., Cheng, S.H., Zeng, L.T., Dong, F., Yang, Z.Y.*. Proteolysis of chloroplast proteins is responsible for accumulation of free amino acids in dark-treated tea (Camellia sinensis) leaves. Journal of Proteomics, 2017, 157: 10-17.
[32] Zeng, L.T.#, Zhou, Y.#, Fu, X.M., Mei, X., Cheng, S.H., Gui, J.D., Dong, F., Tang, J.C., Ma, S.Z., Yang, Z.Y.*. Does oolong tea (Camellia sinensis) made from a combination of leaf and stem smell more aromatic than leaf-only tea? Contribution of the stem to oolong tea aroma. Food Chemistry, 2017, 237: 488-498.
[33] Zhou, Y.#, Zeng, L.T.#, Liu, X.Y., Gui, J.D., Mei, X., Fu, X.M., Dong, F., Tang, J.C., Zhang, L.Y., Yang, Z.Y.*. Formation of (E)-nerolidol in tea (Camellia sinensis) leaves exposed to multiple stresses from tea manufacturing process. Food Chemistry, 2017, 231: 78-86.
[34] Mei, X.#, Liu, X.Y.#, Zhou, Y., Wang, X.Q., Zeng, L.T., Fu, X.M., Li, J.L., Tang, J.C., Dong, F., Yang, Z.Y.*. Formation and emission of linalool in tea (Camellia sinensis) leaves infested by tea green leafhopper (Empoasca (Matsumurasca) onukii Matsuda). Food Chemistry, 2017, 237: 356-363.
[35] Zeng, L.T.#, Zhou, Y.#, Gui, J.D., Fu, X.M., Mei, X., Zhen, Y.P., Ye, T.X., Du, B., Dong, F., Watanabe, N., Yang, Z.Y.*. Formation of volatile tea constituent indole during the oolong tea manufacturing process. Journal of Agricultural and Food Chemistry, 2016, 64: 5011-5019.
[36] Gui, J.D.#, Fu, X.M.#, Zhou, Y., Katsuno, T., Mei, X., Deng, R.F., Xu, X.L., Zhang, L.Y., Dong, F., Watanabe, N., Yang, Z.Y.*. Does enzymatic hydrolysis of glycosidically bound volatile compounds really contribute to the formation of volatile compounds during the oolong tea manufacuring process? Journal of Agricultural and Food Chemistry, 2015, 63: 6905-6914.
[37] Yang, Z.Y.#, Baldermann, S.#, Watanabe, N.*. Recent studies of the volatile compounds in tea. Food Research International, 2013, 53: 585-599.
[38] Yang, Z.Y., Kobayashi, E., Katsuno, T., Asanuma, T., Fujimori, T., Ishikawa, T., Tomomura, M., Mochizuki, K., Watase, T., Nakamura, Y., Watanabe, N.*. Characterisation of volatile and non-volatile metabolites in etiolated leaves of tea (Camellia sinensis) plants in the dark. Food Chemistry, 2012, 135: 2268-2276.